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Atomic self-diffusion in dodecagonal quasicrystals?
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Abstract. A molecular dynamics study of atomic self-diffusion in Frank-Kasper type dodecagonal qua-
sicrystals is presented. It is found that the quasicrystal-specific flip mechanism for atomic diffusion, pre-
dicted by Kalugin and Katz, indeed occurs in this system. However, in order to be effective, this mechanism
needs to be catalyzed by other defects, such as half-vacancies. For this reason, it is difficult to distinguish
from standard vacancy diffusion.

PACS. 61.44.Br Quasicrystals – 66.30.-h Diffusion in solids – 61.72.Ji Point defects (vacancies, interstitials,
color center, etc.) and defect clusters

1 Introduction

Atomic diffusion in quasicrystals has become a topic of
considerable interest recently. Stimulated by a paper of
Kalugin and Katz [1], in which a diffusion mechanism spe-
cific to quasicrystals was proposed, several Monte-Carlo
studies for random tiling models have been carried out
by a number of groups [2–7]. These studies show that
the quasicrystal-specific flip moves indeed can add up
to global diffusion. From these simple tiling models it is
not possible, however, to reliably estimate the size of this
quasicrystal-specific diffusion component, nor of its acti-
vation energy. In fact, it is even not clear a priori whether
the elementary flips proposed by Kalugin and Katz [1]
are energetically feasible processes. To decide this ques-
tion, and to be able to better compare with the recently
obtained experimental results [8–16], we have carried out
molecular dynamics (MD) simulation on a realistic qua-
sicrystal model.

The elementary processes in the flip mechanism consist
of certain quasicrystal-specific rearrangements of atoms,
where the initial and final configurations are energetically
almost degenerate. In quasicrystals which are decorations
of quasiperiodic tilings with atoms, the flip mechanism
consists of a reshuffling of certain local tile configurations,
along with their decorations. One goal of our MD simula-
tions was to check the feasibility of the flip mechanism. For
such a simulation, not only a realistic model structure is
needed, but also (short range) interatomic potentials sta-
bilizing the model structure. Fortunately, this has become
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available: Dzugutov [17] has discovered a one-component
system stabilized by a simple potential in an MD simu-
lation. The supercooled liquid solidifies into a quasicrys-
talline structure already known as a realistic model of do-
decagonal quasicrystals [18,19]. Our models, perfect and
defective versions of this structure, are layered structures
essentially of Frank-Kasper type. They are periodic in one
direction.

We find that the flip mechanism [20] indeed occurs,
but, since the structure is mostly close-packed and thus
very rigid, this process has a very high activation energy.
However, it can efficiently be catalyzed by the presence of
other defects, such as vacancies and half-vacancies. The
latter are associated with the breaking of periodicity in
the third direction. Unfortunately, the effects of vacancy
diffusion and flip diffusion are hard to separate. While
the presence of vacancies and half-vacancies is required
for the flip mechanism to work, these same vacancies, of
which there is always an equilibrium density of about 2.5%
present in our simulations, also lead to ordinary vacancy
diffusion, which can mask the flip diffusion.

The paper is organized as follows: In Section 2 we dis-
cuss the dodecagonal quasicrystal model and its geometri-
cal and topological properties. Section 3 is devoted to an
introduction of the interaction, simulation method, and
analysis tools. In Section 4 we present the results of our
simulations and finish with the conclusions in Section 5.

2 The dodecagonal model quasicrystal

2.1 Structure features of the ideal tilings

The structure model of the dodecagonal quasicrystal is a
layered system which, apart from some defects, is periodic
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Fig. 1. The basic tiles of the dodecagonal model: square, tri-
angle, rhombus, shield, twofold symmetric hexagon. The dot-
ted atoms are placed in A-layers z = 1/4 and 3/4, the white
atoms in B-layers at z = 0, and the black atoms in B̄-layers at
z = 1/2. All tiles can also occur with black and white atoms
exchanged, depending on their orientation. The twofold sym-
metric hexagon is unstable and does not occur in our tilings.

Fig. 2. Transformation from a rhombus pair and a triangle to
a triangle and a square.

Fig. 3. Different configurations of a column: staggered (left),
vertical (middle), and half staggered/half vertical, with a half-
vacancy in between (right).

in one direction, but quasiperiodic and 12-fold symmetric
in the plane perpendicular to it. It basically is of Frank-
Kasper type, i.e., it is mostly tetrahedrally close-packed,
and can be described as a periodic stacking ABAB̄ of a
primary dodecagonal layer A and two secondary hexag-
onal layers, B and B̄, which are rotated by 30◦ with
respect to each other, to obtain dodecagonal symmetry.
The atoms in layer A form the vertices of a simple tiling
made of squares, triangles, 30◦ rhombi and two kinds of
hexagons. These tiles, together with their decorations, are
shown in Figure 1. The dodecagonal quasicrystal struc-
ture can therefore be regarded as a decoration of a simple
dodecagonal tiling [18,19]. It is an excellent model for do-
decagonal Ni-Cr quasicrystals [21], but is also related to
the structure of dodecagonal Ta-Te and its approximants
[22]. The squares and triangles can also be assembled to a
number of well-known crystalline phases (Sect. 2.3), which
are closely related to dodecagonal quasicrystals.

All structures based on a tiling with squares and tri-
angles only are perfectly tetrahedrally close-packed. Such
structures are therefore very rigid, and there are only few
small groups of tiles that can be reshuffled [23]. If hexagons
or rhombi are present, however, some atoms do not have a
close-packed environment. Octahedral neighbourhoods oc-
cur in the interior of hexagons and at the obtuse corners

Fig. 4. Rotatory flip of the shield with one rhombus. The three
parts show local minima.

Fig. 5. The possible configurations inside the shield. The first
two configurations are stable. The third one relaxes quickly
into one of the first two, if present in the initial configuration.
The last arrangement is very unstable and is not found in our
simulations.

of the rhombi. Near the octahedra, the structure is much
softer than on average. All structures with the same area
and height contain the same number of atoms, since all
structures can be transformed by shifts of atoms into an
square-triangle-tiling. The density in all structures with
the same volume is thus identical.

In the structures containing hexagons and rhombi
there are many local tile configurations which can easily be
reshuffled. This is achieved by small shifts of some atoms
from A layers into the B and B̄ layers, or vice versa. These
reversible shifts shall be called “flips” in the following. As
the first such flip we discuss the transformation of a pair
of rhombi and a triangle into a square and a triangle (or
vice versa), as shown in Figure 2. In this process, only one
(straight) column of atoms in A layers has to be changed
into one (staggered) column of atoms in B- and B̄-layers
(Fig. 3). This is achieved if all atoms in the column make
a little move diagonally upwards (or downwards), with al-
ternating directions in the quasiperiodic plane. The same
column move and its inverse also trigger all the other flip
processes. Particularly important is the flip which replaces
the interior of a hexagon containing a square, two trian-
gles and a rhombus by a perfectly three-fold symmetric
configuration called shield (Fig. 4), or vice versa. By two
consecutive such flips, a rhombus can change its position
within the hexagon (Fig. 4). In fact, by consecutive col-
umn moves any of the four possible shield-shaped configu-
rations (Fig. 5) in any orientation can be transformed into
any other. Similarly, the three configurations filling a flat
hexagon (Fig. 6) can be transformed into each other by
column moves. A sequence of two such flips allows a rhom-
bus to change its position (Fig. 7). A further important
flip is the one shown in Figure 8, where a shield changes
its position. This large jump of the shield is triggered by
only two nearby column moves. All flip processes can be
broken down to the elementary processes described above,
and these in turn can be decomposed into individual col-
umn moves.

In a perfect structure the column moves are not very
easy, however. In such a move all atoms in a whole column
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Fig. 6. The possible configurations inside the two-fold sym-
metric hexagon. The fist configuration is stable, while the sec-
ond may occur slightly destorted as a transition state. The last
arrangement is unstable and relaxes immediately, if present at
the beginning of a simulation.

Fig. 7. Translational flip of the twofold symmetric hexagon.
The central configuration is not exactly the saddle point, since
the flipping atoms are shifted by 1/10 of the period along the
periodic axis.

have to move upwards or downwards, whereas other atoms
change their position very little. Such a process seems not
very likely, since the vertical distance of atoms is already
rather small, which means that there is no place for an
atom to start moving. Only at places where the structure
is not perfectly close-packed the atoms can find some space
to move sideways. In this way, a column move can be
started, and flips are indeed possible, as our results will
show (see Sect. 4).

Although the structure is mostly close-packed and
therefore very dense, there exist characteristic anisotropies
in the model, which result in a anisotropic mobility of the
atoms along the periodic axis. Along this axis, the atoms
are arranged in straight closed-packed columns, which al-
low collective moves of the atoms. In the quasiperiodic
plane and in oblique directions there are no such close-
packed rows, which would allow collective moves of the
atoms over a longer distance.

2.2 Point-like defects

In the presence of vacancies, the column moves and thus
the flip processes become much easier. Since between two
atom positions in a column parallel to the periodic axis
there is another good atom position, a neighboring atom
of a vacancy can move half-way into the vacancy, effec-
tively splitting it into two half-vacancies, which can then
move up and down the column independently, and trans-
form it from the vertical configuration into the staggered
configuration and vice versa (Fig. 3). Such half-vacancies
therefore efficiently catalyze the various flip moves intro-
duced above. The half-vacancies are also responsible for a
possible breaking of the periodicity in z-direction.

Half-vacancies are larger than octahedral holes, but
smaller than vacancies at ordinary atomic sites. They do
not occur in structures which are stacked perfectly peri-
odically. Due to the close-packed nature, there are only
tetrahedral holes, and octahedral holes at the centers of

Fig. 8. Translational flip of the shield. The three parts show
local minima.

the shields and the obtuse corners of the rhombi, where
the structure is not close-packed. Half-vacancies occur at
places where strict periodity is broken. Typical examples
of such places are a triangle-rhombi configuration stacked
onto a square-triangle configuration (Fig. 2), and a shield
stacked onto a shield-shaped hexagon filled with a rhom-
bus, two triangles and a square (Fig. 4). Half-vacancies
always occur when the staggered column configuration
with atoms in the B and B̄ layers switches to a vertically
stacked configuration with atoms in the A layers (Fig. 3).

As a complement to the half-vacancies there are also
places where atoms are too close together, forming sort of
a half-interstitial. This arrangement is completely unsta-
ble, however, due to the hard core repulsion of the atoms.
The neighbouring atoms are shifted by a small amount,
until all the atoms have a proper distance from each other.
This process causes some local distortion of the structure.

The high packing density has a further effect: the
tilings in all the layers are forced to be identical, as long
as the structure is in equilibrium and the potential energy
is optimal. If we take two adjacent A layers, we find that
the B atoms are located exactly in the bumps of these
layers, which imposes a strong coupling, so that there is
no freedom for the tiling to change from one A-layer to
the next. Stacking faults therefore are possible only at a
considerable energy cost.

2.3 Samples used in the simulation

For the simulations we have constructed samples based on
several tilings of different sizes and with different types of
tiles. Dodecagonal tilings can be formed in a variety of
ways using squares, triangles, rhombi and hexagons. The
samples used in our simulations are based on four differ-
ent types of such tilings: with squares and triangles only
(SqTr), with additional shields (Shi) or with additional
rhombi (Rho), and random tilings made of squares, tri-
angles and rhombi (Ran). The Ran samples also contain
rhombi adjacent to each other, which is not the case for
the Rho samples. Furthermore, we have used a small tiling
called Dod, which consists of a regular dodecagon (filled
with triangles and squares) plus one square and four tri-
angles.

Most samples are built as a periodic stacking of lay-
ers based on the same tiling. In addition we have also
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Table 1. Number of tiles per period and total number of A
atoms for the tilings used in the simulations. Tiles types: S:
squares, T: triangles, R: rhombi, H: shields. The names for the
tilings are given in the text. I and F: number of atoms in the
A layer at the beginning and at the end of the simulation,
respectively. For the three groups of structures, a single pe-
riod contains 112, 836 and 4680 atoms, respectively, and the
simulation cells consisted of 2, 10 and 3 periods.

name S T R H I F

Dod2 4 12 0 2 56 56-64

SqTr 52 120 0 0 2240 2240

Rho/Ran 44 120 16 0 2400 –

Shi 28 88 0 16 2040 2040

SqTrFlat 291 672 0 0 3762 3762

AperFlat 246 672 90 0 4032 3670

ShiFlat 156 492 0 0 3492 3620

used samples obtained by stacking layers based on dif-
ferent tilings. We call this a random stacking, although
the sequences are chosen so that the mismatches between
neighbouring layers are minimal. There are a few short dis-
tances due to the mismatches, but they can be removed by
carefully relaxing the starting configuration. No changes
in the atomic positions between the originally prepared
and then relaxed configurations beyond local adjustments
have been observed.

The aperiodicity of quasicrystals causes a problem
with the boundary conditions in the simulation. Taking
a finite patch with open boundary conditions should be
avoided, because of the large surface effects which affect
the stability of the structure. The solution is to use pe-
riodic approximants, which are finite, rectangular bricks
whose borders fit together on opposite sides. In this way,
periodic boundary conditions can be used, which is done
throughout this paper.

Simulation cells of three different sizes have been used.
The first cell is approximately cubic. The samples with
this cell shall be called the “cubic” ones. In the quasiperi-
odic plane this cell has an edge length of 5 + 3

√
3 =

(2 +
√

3) ∗ (1 +
√

3) tile edges. Along the z-axis the cell
contains 10 basic ABAB̄ layers, which are decorations of
either the SqTr, the Shi, the Rho or the Ran tiling. The
resulting samples are denoted by the same names. In ad-
dition, we have also used a cubic sample obtained from a
random stacking of different tilings. This sample is called
Aper. Independently of the underlying tiling, the cubic
samples all contain 8360 atoms each.

The second simulation cell contains only three basic
ABAB̄ layers, but has an edge length of 12 + 7

√
3 = (2 +√

3)2∗
√

3 in the quasiperiodic plane. These samples, which
shall be called the “flat” ones, are built on either the SqTr
or the Shi tiling, or with a random stacking of different
tilings. These samples are called SqTrFlat, ShiFlat and
AperFlat, respectively, and contain 14040 atoms each.

Finally, we have used samples based on the Dod tiling,
whose edge length is 2+

√
3. These samples have a varying

Fig. 9. Crystalline phases with squares and triangles only and
a single vertex configuration. From left to right: A15, Z, H and
σ phase

number of layers. Up to 15 layers have been used, in order
to study the influence of size of the simulation box in the
periodic direction. Details of the tilings can be found in
Table 1.

In addition to the quasicrystalline tilings, it is also pos-
sible to generate crystalline phases with squares and tri-
angles decorated in the same way as in the quasicrystals.
If only squares are used, the A15 or β-tungsten struc-
ture is obtained, whereas a pure triangle tiling results in
the Zr3Al4 or Z structure. If both squares and triangles
are used, one can obtain the σ-phase (two non-adjacent
squares and four triangles per unit cell) or the H-phase
(two adjacent squares and four triangles per unit cell).
For the crystalline phases we have used samples of a size
similar to the “cubic” quasicrystalline samples. The ver-
tex configurations of the crystalline phase are shown in
Figure 9.

Up to 2.5% vacancies have been artificially created in
the (cubic) SqTr and Shi samples. This is similar to the
number of vacancies found by Dzugutov [24] in his simula-
tions. The vacancies in the SqTr sample have been created
at tiling vertices, at tile edge centers, or in the interior of
the triangle or a square. The resulting samples are called
SqTr vert, SqTr edge, SqTr tri and SqTr sq, respectively.
A sample with vacancies on arbitrarily chosen locations
is called SqTr any. In a similar way, vacancies have been
introduced in the Shi sample, at sites inside the shield.
There are two kinds of such sites. Those near the rectan-
gular corners are analogous to the sites inside a square.
Samples with such vacancies are called Shi sq. The re-
maining six sites inside a shield form an octahedron. Near
these sites the structure is not tetrahedrally close-packed.
Samples with vacancies at such sites are called Shi oct.
There are also samples with fewer vacancies, in which case
we indicate their concentration (1.3%).

3 Setup for the simulations

3.1 Interaction

For our simulations we used a potential similar to the
one described by Dzugutov [25]. The special feature of
Dzugutov’s potential is that it has a minimum at 1.13σ 1

of depth −0.581ε similar to the well-known Lennard-Jones

1 All physical properties in this paper are given in standard
Lennard-Jones units ε and σ [26], where −ε is the depth of
the potential minimum and σ the distance of two atoms at the
radius of the potential minimum. Quantities given in reduced
units are indicated by a ∗.
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Fig. 10. The Dzugutov potential used in this paper.

potential, but also has a maximum at 1.63σ of height
0.460ε, and then goes to zero continuously. The maximum
is designed to prevent the system from crystallizing into
simple crystal phases like fcc, hcp or bcc. The potential
has a short finite range of rc = 1.94σ, which is impor-
tant to keep the computation time within reasonable lim-
its. In our simulations we have used a rescaled version of
Dzugutov’s potential, so that its minimum is exactly at
−ε. To compare Dzugutov’s results with ours one has to
rescale the energies accordingly. Especially our tempera-
ture scale has to be multiplied by 0.581 to get into agree-
ment with Dzugutov’s data. The potential is displayed in
Figure 10. In the simulations we have tabulated the po-
tential for too reasons: this makes it easier to change from
one potential to another, and it improves the performance
of the simulation program if the potential is defined by a
complicated function.

3.2 Simulation method

The equilibrium molecular dynamics simulation method
was applied to determine the equilibrium shape of the
simulation box and to explore the pressure-temperature
phase diagram of the system. This procedure requires a
constant-pressure-constant-temperature ensemble (NPT)
instead of the standard microcanonical constant-volume-
constant-energy ensemble (NVE). To implement the NPT
ensemble we use the constraint method of [27]. The equa-
tions of motion are modified by terms rescaling the simula-
tion box size and accelerating or slowing down the atoms.
Since we have a layered structure, with a simulation box
which has only tetragonal instead of cubic symmetry, it
is appropriate to allow the three box dimensions to fluc-
tuate independently. This is possible with the simulation
scheme introduced in [28].

The equations of motion are integrated by a fourth-
order Gear predictor-corrector algorithm (see, for exam-
ple, [26]). The predictor-corrector algorithm allows us to
trace the trajectories of the atoms more accurately than
with the simpler Verlet schemes, and up to recently it
was not known how to implement Verlet-like integration
methods in the case of modified equations of motion.

The time increment of the integration steps δt∗ was
adjusted after testing for numerical stability. We find that

δt∗ = 0.005 is an appropriate value. For simplicity, and
since there is only one type of atoms, the masses of all
atoms where set to unity. Depending on the results, the
simulations took from as few as 10,000 up to as many as
3× 107 time steps, after an additional equilibration period
of 10,000 steps.

3.3 Physical accuracy of the diffusion measurements

Changing the thermodynamic ensemble from the standard
microcanonical NVE ensemble to another ensemble always
changes the trajectories of the atoms. All methods used
for simulations of ensembles where pressure or tempera-
ture or both are fixed have to change the equations of
motion, and therefore affect the ordinary velocities and
positions of the atoms. The constraint method changes
the trajectories in the least possible way, since it is a re-
alization of the Gaussian principle of the least constraint.
The trajectories of the atoms therefore do not represent
the physical ones found in microcanonical ensemble sim-
ulations. It should be kept in mind, however, that any
single trajectory computed in any ensemble depends in
any case on many non-physical things, in particular the
computer precision. A single trajectory therefore should
not be overinterpreted. It is rather the statistics over many
trajectories which does have a physical meaning. In a sim-
ulation one may, for example, calculate the mean square
displacement and derive the diffusion constant from it. We
find that such averages are independent of the simulation
ensemble that is chosen, if they are evaluated properly.

3.4 Applicability of molecular dynamics simulations

A serious limitation of molecular dynamics simulations is
the characteristic time scale of the processes we are inter-
ested in. If this time scale is of the order of the simulation
time or longer, it is not possible to get equilibrium results.
This is the case for diffusion simulations. Most of the time
the atoms are only fluctuating around their equilibrium
position. The typical time scale of the fluctuations and of
atomic jumps is about 10−13 s [29]. To represent the mo-
tion of the atoms accurately, the simulation requires time
increments of the order of 10−15 s. The typical residence
time of an atom in a metal just below the melting point is
10−7 s, which is a factor of a million longer than a jump
process. It would thus take 108 steps to see a single atom
jump once. But since we have of the order of 10,000 atoms,
we can expect a total of about 100 jumps during a typical
simulation with one million time steps. For these reasons
it is in general not possible to calculate the diffusion con-
stant accurately as a function of temperature, especially
at low temperatures where jumps are even less frequent.

There are other limitations for computer simulations,
resulting from the limited size of the sample. By ap-
plying periodic boundary conditions to avoid surface ef-
fects, the diffusion behaviour may be changed. To cre-
ate vacancies, atoms have to move to the surface, which
is no longer possible with periodic boundary conditions.
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The only way to create vacancies is to remove atoms from
the sample, but to do this correctly the equilibrium den-
sity of vacancies has to be known and, what is more im-
portant, the relevant diffusion mechanisms must be known
beforehand.

Molecular dynamics is a good tool, however, to find
the types of jumps that occur and to extract the basic
jump paths. It is then possible to calculate the diffusion
barriers, the activation energies and the jump frequencies.
These results may be used in Monte-Carlo simulations,
where the simulation steps are no longer limited to the
vibrations of the atoms around their equilibrium position,
but are the basic jump processes. In this way, it is possible
to derive the actual diffusion constants and the long-time
diffusion behaviour.

3.5 Phase diagram

The ground state structure of Dzugutov’s potential is not
known with certainty [30]. Since it is not possible to ex-
plore the whole configuration space for densely packed
solid structures by standard computer simulation meth-
ods, the only thing one can do is to run simulations for
different plausible structures, and to compare their ther-
modynamical properties. We have done this comparison
for the structures described in Section 2, as well as for
some simple crystalline phases. These simulations indicate
that the ground state of the Dzugutov potential is not
the quasicrystal or one of its approximating crystalline
phases described in Section 2, but rather a simple bcc
crystal [30]. Apart from this bcc phase, the crystalline
σ phase turns out to be the most stable phase. It con-
sists of the same triangles and squares as the quasicrys-
talline SqTr phase, which we have used to determine the
part of the pressure-temperature phase diagram where the
square-triangle structures are solid and meta-stable2. A
series of simulations was run at fixed temperature and
pressure, starting with the solid structure. Beginning at
low temperatures, we increased the temperature until the
sample underwent a phase transition. Further simulations
between the last point in the solid range and the first point
in the liquid range where used to pin down the transition
line with more accuracy. This procedure was carried out
for a number of pressure values to get the full transition
line presented in Figure 11.

The system does not melt at the phase transition at
T ∗ = 0.95 and P ∗ = 0.001, but rather sublimates. For
Dzugutov’s structure we find a different melting temper-
ature (T ∗ = 0.7), due to defects in the structure. After
the transition the potential energy is close to zero, which
means that the coordination number is very low and the
atoms are nearly unbound. The volume increases by a
large factor, which further indicates that the new phase is
a gas. We have performed a number of simulations along
the phase transition line with increasing temperatures to
find a triple point, but without success. The difference in

2 The situation is similar to the Lennard-Jones case. Usually
one simulates fcc structures, although the ground state is hcp.
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Fig. 11. Pressure-temperature phase diagram for the
Dzugutov potential. This is not a phase diagram of thermo-
dynamic equilibrium, but the transition line indicates where
the sublimation occurs in a heating simulation experiment.

potential energy between the solid and fluid phase dimin-
ishes and becomes too small to be resolved by molecular
dynamics at T ∗ = 2 and P ∗=15. We have to point out,
however, that a more thorough investigation of the phase
diagram would require a calculation of the Gibbsian free
energy. This has not been carried out, since it is beyond
the topic of this study.

The long-time diffusion simulations were run at T ∗ =
0.6, which is rather close to the melting temperature
T ∗m = 0.95. The high temperature was necessary to keep
the atoms sufficiently mobile. The hydrostatic pressure
applied in all simulations was P ∗ = 0.001.

3.6 Analysis tools

To analyze the equilibrium structures in detail, we
quenched the configurations to zero temperature by set-
ting the temperature in our NPT-MD-program to T ∗ = 0
and δt∗ = 0.0001, thereby using the program as a steepest
descent algorithm. The quenching has the effect that all
the atoms move to the local energy minimum. To check
the validity of this procedure, we compared the in situ
and the quenched structures, and found that there are no
substantial differences. The next step is to calculate the
Voronoi cells and their dual Delaunay cells, and to de-
termine from the latter the distribution of the hole sizes
(free volumes) in the structure (see Fig. 12). The diagram
indicates that there are vacancies in Dzugutov’s struc-
ture obtained by cooling. The density of the vacancies
is about 2.5%.

Although the distribution of free volumes gives a rea-
sonable representation of the small interstitial sites, it
largely overestimates the vacancies by a factor of about
ten. This happens because the Delaunay cells are face-
to-face packed tetrahedra, whereas the vacancies should
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Fig. 12. Histogram of hole sizes for different structures, after
cooling to zero temperature. There are holes inside tetrahedra,
holes inside octahedra, half-vacancies, and full vacancies, where
entire atoms fit in. The data of Dzugutov’s structure is shown
in solid, both before and after the full vacancies have been
filled. The data for a square-triangle-shield structure is shown
dashed, after a very long simulation, both with (short dashed,
Shi oct) and without (long dashed, Shi) initial holes.

be represented by spheres which can easily cover several
tetrahedra. To solve this problem, we filled all the vacan-
cies with spheres. We start at a certain Delaunay cell and
create a tree connecting all Delaunay cells with a center
distance to the first cell smaller than the minimal atom
distance. We repeat this procedure until the tree includes
all Delaunay cells that would contain mutually overlap-
ping spheres. Then we fill the tree with spheres, starting
at the outmost ends. After adding a sphere, all the De-
launay cells covered by it are discarded. Then the next
sphere is added on the next outermost Delaunay cell left,
and so on. This procedure is repeated until the whole tree
is filled. Then the algorithm starts again with a Delau-
nay cell not yet visited. This method allows us to fill the
sample as densely as possible with vacancy atoms.

3.7 Characteristic lengths

One of the useful properties of the square-triangle-rhombi-
shield model is that it is possible to reconstruct the whole
tiling from the atomic positions only. This is especially
valuable in molecular dynamics simulations. The basic
length is the edge of a tile. In the simulation it is the
average distance of two neighboring atoms in the same
primary A layers. Connecting all the atoms with this sep-
aration reconstructs the underlying the tiling. Other char-
acteristic lengths may be easily found from geometrical
considerations. Specific tiles like the rhombi can be found
by searching for atoms with their short diagonal distance,
shields are found by looking for all triangles with an edge
length of the diagonal of the square containing no further
atom in the A layer.
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Fig. 13. Relaxation of the potential energy (AperFlat sample).

4 Results

We first present the results that are valid for all samples,
irrespectively of whether they are perfect, have defects, in-
stable vertex configurations or stacking disorder. Then we
proceed with the results for structures without vacancies
(but including structures with stacking disorder), first for
the samples with many layers, and then for the flat sam-
ples. Finally, the results for the structures with vacancies
are presented, again first for the samples with many lay-
ers, then for the flat samples. In each case, the poten-
tial energy, the mean square displacement of the atoms,
the atomic displacements, and the jumps and the flips of
the tiling are determined. The flips observed in the flat
samples will be analyzed, and the activation and barrier
energies will be calculated.

4.1 General results

In all simulations we have monitored the potential energy
during the whole simulation time. After an equilibration
period of 10,000 time steps, and also at the end of the
simulation, we have quenched the structure from the sim-
ulation temperature T ∗ = 0.6 to T ∗ = 0 to get the static
equilibrium positions of the atoms. The resulting energies
are given in Table 2. We note that there is not much dif-
ference between the energies within the groups separated
by the horizontal lines, with the following two exceptions.
The Ran samples containing pairs of rhombi clearly im-
prove during simulation. The same is true for the random
stacking structures, where the initial energies before re-
laxation were −3.292 and −3.375 for the cubic and the
flat sample, respectively. The relaxation process can be
observed in Figure 13. It lasts about 300,000 simulation
steps. Among the structures studied (and apart from the
simple bcc phase), the best structure is the σ-phase, but
the dodecagonal square-triangle tiling is very close. The
worst is the pure triangle phase, and we will have to deal
with the special properties of this phase later. The pure
square phase and the H-phase are not so good, either.
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Table 2. Potential energies per atom and number of simulation steps. Subscripts: O: orthogonal, C: cubic, I: initial state
at T ∗ = 0.01 (SqTrFlat, ShiFlat, and Dod* at T ∗ = 0.1), S: simulation average at T ∗ = 0.6, Q: quenched to T ∗ = 0 after
simulation. The names of the phases are explained in the text, 16384 is Dzugutov’s sample in an isothermal-isobaric ensemble,
NVT the same as an isothermal-isochoric ensemble. In the 16,770 and 16,888 simulation additional atoms have been put into the
vacancies. Flat samples contain 14,040 atoms, cubic samples 8360 atoms. The digits after Dod indicate the number of periods.
Two energy values are given if the structure relaxes during simulation. “–” means that the value has not been calculated.

phase VOI VCI VOS VCS VOQ VCQ steps

Aper −4.367 – −3.292/−3.408 – – /−4.395 – 3.00e5

AperFlat – – −3.371/−3.415 – −4.365/−4.407 – 7.00e5

SqTr −4.421 −4.419 −3.427 −3.427 −4.420 −4.418 3.43e5

SqTrFlat −4.244 – −3.408 – – – 1.00e5

Ran −4.338 −4.338 −3.409 −3.370 −4.405 −4.382 4.47e5

Rho −4.410 −4.408 −3.370 −3.398 −4.391 −4.390 4.39e5

Shi −4.391 −4.389 −3.397 −3.400 −4.391 −4.390 3.50e5

ShiFlat −4.240 – −3.403 – – – 5.00e5

Dod2 −4.245 – −3.412 – – – 300.0e5

Dod3 −4.245 – −3.405 – – – 1.00e5

Dod4 −4.245 – −3.405 – – – 1.00e5

Dod5 −4.245 – −3.407 – – – 20.0e5

Dod6 −4.245 – −3.410 – – – 20.0e5

Dod10 −4.245 – −3.409 – – – 0.14e5

16384 – −4.097 – −3.334 – −4.245 0.10e5

16770 – −4.240 – −3.281 – −4.288 0.10e5

16888 – −4.228 – −3.266 – −4.276 0.10e5

NVT – −4.087 – −3.336 – −4.248 0.10e5

A15 −4.329 −4.329 −3.365 −3.365 −4.328 −4.328 1.00e5

Z −4.216 – −3.177 – −4.213 – 6.28e5

H −4.345 – −3.365 – −4.345 – 1.00e5

σ −4.453 – −3.373 – −4.453 – 1.50e5

SqTr any −4.332 – −3.341 – −4.334 – 1.47e5

SqTr edge −4.334 – −3.343 – −4.336 – 1.47e5

SqTr vert −4.336 – −3.344 – −4.335 – 2.64e5

SqTr squa −4.332 – −3.339 – −4.333 – 1.44e5

SqTr tri −4.315 – −3.324 – −4.315 – 1.48e5

Shi any −4.292 – −3.302 – −4.303 – 1.54e5

Shi oct −4.347 – −3.357 – −4.349 – 3.00e5

Shi oct (1.3%) −4.366 – −3.378 – −4.368 – 3.00e5

This clearly shows that a mixture of squares and triangles
is preferable. In Dzugutov’s phases and in the samples
with vacancies we clearly see the influence of the defects
on the potential energy. The length of the simulation runs
can also be found in Table 2.

The samples with approximately cubic cell have been
simulated with two kinds of periodic boundary conditions.
With “orthogonal” boundary conditions the box size is
allowed to fluctuate in all three directions independently,
whereas with “cubic” boundary conditions only isotropic
size fluctuations are permitted. The sample is also slightly
distorted to fit into the cubic box. We find that there is

not much difference between cubic and orthogonal bound-
ary conditions. Compared to cubic boundary conditions
the potential energy is slightly improved with orthogo-
nal boundary conditions, since in the cubic case the layer
distance is slightly larger than optimal. With orthogonal
boundary conditions the system has more degrees of free-
dom, which are used to adjust the layer distance with
respect to the atom distance in the quasiperiodic plane.
The result is a tetragonal box, which reflects the fact
that we have used square approximant cells. The pure
square phase represents a special case: as mentioned in
Section 2.3, this phase is identical to the cubic A15 phase.
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Fig. 14. Comparison of the initial and final configuration after 100,000 simulation steps, for the Ran phase without vacancies.
On the left, a projection of the initial state on the xy-plane is shown. On the right, the same structure is shown at the end of the
simulation. The tiling has been reshuffled at some places, and at different z-coordinates one has different tilings, so periodicity
is slightly broken. Atoms which have moved are primarily inside shields. The tile edges appear as heavy lines because the tilings
at different z-levels, all drawn on top of each other, have been reconstructed from the thermally distorted atom positions.

The simulation should therefore prefer a cubic simulation
box, which is indeed the case, within the error bounds.

The quotient a/c of the box dimension in the quasiperi-
odic plane (a) and along the periodic axis (c) is largely
independent of the temperature. This means that thermal
expansion is approximately isotropic.

4.2 Structures with many layers and without vacancies

Our first goal was to understand the behaviour of the per-
fect quasiperiodic structures SqTr, Shi, Rho, and Ran, as
well as that of the simple crystalline phases, both sets
without any defects (vacancies, stacking disorder). Later
we will introduce vacancies and start the simulations from
randomly stacked samples.

The pure square-triangle tiling structure (SqTr) turns
out to be very stable. The same is true for structures con-
taining shields (Shi), and for the crystalline pure square,
σ- and H-phase structures. Simulation runs for these
phases at T ∗ = 0.6 reveal that no atom changes its place,
which means that there are no atomic jumps observable,
and therefore no diffusion and no tile flips or relaxation
processes occur. In an attempt to facilitate diffusion, the
sample had been elongated along the periodic axis to draw
the layers apart, but this had no effect on diffusion.

All the other phases studied are stable in the sense
that the structure remains a generalized square-triangle-
rhombus-shield tiling, and does not change to a crys-
talline structure, for example. In contrast to the phases
discussed before, we observe in the quasicrystalline sam-
ples ShiFlat, Rho, Ran, Aper, AperFlat, and in the crys-
talline pure triangle phase, that atoms can jump, and that

even long-range diffusion occurs in a few cases. The tiling
may change also by flips and relaxation processes, thereby
changing the frequency of certain tiles.

In a more strict sense, the Rho phase containing iso-
lated rhombi should only be called metastable. While it
remains unchanged at T ∗ = 0, the rhombi are successively
transformed into shields at T ∗ = 0.6, on a time scale of
about 300,000 simulation steps. This time is long enough
for some of the rhombi to change their places by flipping.
The rearrangements yield a short time contribution to the
average mean square displacement of the atoms. Since the
rearrangement of the tiles is a local process, which can
start at different places along the periodic axis at the same
time, the final state need not be perfect. A few defects will
remain for a longer time, which permits a very low diffu-
sion rate at long time scales. The full periodicity along the
z-axis is eventually restored, due to the strong coupling of
the layers. The final structure is a square-triangle-shield
phase.

The random tiling phase Ran contains in addition
some pairs of rhombi. Like the Rho phase it is metastable.
At T ∗ = 0.6, the rhombi pairs are even very unsta-
ble and recombine immediately, during equilibration al-
ready. Since this process is so fast, it can happen that
the periodicity is broken for some time, which may trig-
ger jump processes in the quasiperiodic plane. Beyond
relaxation, the same processes as in the Rho phase oc-
cur. In both phases the number of vacancies created
is negligible (1 or 2).

Pictures of the changes between the initial and fi-
nal configurations are presented in Figure 14. Tiles
have been drawn to show the flips and the relaxations.
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Fig. 15. Comparison of the initial and final configuration after 100,000 simulation steps, for the Ran phase without vacancies.
On the left, a projection on the xy-plane is shown, with initial and final positions connected. On the right, a projection of
the same structure onto the xz-plane is shown. It can be seen that atoms primarily move vertically, with small horizontal
displacements only. Jumps of individual atoms are represented by straight line segments. Zig-zags of several line segments
represent chains of atoms which follow each other. If a straight line extends over several layers (right picture), the corresponding
atom must have performed several consecutive jumps.

There are some half-vacancies present, which indicate that
the periodicity is broken at these places. They are found
at obtuse corners of some of the rhombi. The motion of
the atoms during the simulation are revealed by Figure 15,
where we have connected the initial position of each atom
with its final position. In the projection onto the quasiperi-
odic plane (left picture) one observes on the left side a cas-
cade of atoms which have moved a considerable distance.
Longer dashes indicate the relaxations. The projection
onto a plane containing the periodic axis (right picture)
shows on the right side the relaxation of the rhombi atoms
from the A layers to the B and B̄ layers. On the left side
we find again the fingerprints of the cascade. Note that
most of the atoms move only to nearest neighbour places.
This will be different if vacancies are present.

The comparison of the initial and final structure re-
veals the dynamics of the diffusion. It turns out that the
atoms jump preferably along the periodic direction. The
shifts of the atoms in the quasiperiodic plane are small.
In the Rho phase we see consecutive jumps from layer to
layer, whereas in the Ran phase only jumps from one layer
to the next have been observed. The reason is that the
rhombi pairs relax very rapidly to immobile squares and
triangles. The diffusion process is strongly anisotropic and
localized. The atoms move preferably through channels
along the periodic axis. The anisotropy is much smaller
than observed in Dzugutov’s structure, however [24].

The triangular Z phase is the only crystalline phase
where atomic jumps are observed. It is also the only case
where diffusion without defects is possible in the solid
state of the square-triangle system at T ∗ = 0.6. The
tiles, however, do not change and the hexagonal structure

remains intact. The atomic jumps are so frequent that it is
even possible to observe long-range diffusion. Atoms move
in all directions, but there is a small anisotropy: the dif-
fusion in the stacking direction is slightly preferred. The
reason for this behaviour is the following. The site at the
center of the triangle is fifteen-fold coordinated and there-
fore rather big. The atom at this site is too small to fill this
space, and can move so far away from its equilibrium po-
sition that an nearby atom may occupy its site. After this
has happened, normal vacancy diffusion of edge or vertex
atoms sets in. The vast majority of the jumps, however,
still involve the central triangle atoms.

The Aper samples consist of a stacking of layers which
are based on different tilings. These structures are there-
fore aperiodic also in the third direction. Since the differ-
ent layers do not match perfectly with each other, we first
have to relax the structure at T ∗ = 0. As only small shifts
occur during relaxation, these structures can be called
metastable. Even after relaxation there remain some mis-
matches, as can be seen in Figure 16 (left picture). At
T ∗ = 0.6 a tiling without mismatches is formed, and pe-
riodicity is restored nearly everywhere during the simu-
lation. This process lasts about 3000 time steps in the
cubic Aper sample (and 16,000 time steps in the larger
AperFlat samples, which will be discussed below). No un-
tilable regions are left in the end, only point defects may
be present. The behaviour of the atoms is different from
the case without stacking disorder. In the beginning, the
atoms move in plane to get to a low energy position. Then
the atoms start to move, preferably along the periodic di-
rection. In the Aper sample, only two places remain where
the periodicity is broken at the end of the simulation.
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Fig. 16. Projection of the thermalized initial (left) and final (right) state of the tiling of the AperFlat sample, after 700,000
simulation steps. A comparison shows how the tiling has been reshuffled in many places. At the lower left corner of the left
picture one can see that in the beginning of the simulation, there can be considerable mismatches between the tilings of the
different layers. These are healed out during the simulation.

At these places the pattern in one layer is a shield, whereas
in the neighbouring layer it is a cluster of a square, two
triangles and a rhombus. The reason is that a half-vacancy
has been created, which decouples the layers at this place.
This configuration is stable through the whole 300,000
time steps simulated. The final structure of the Aper phase
is a square-triangle-shield tiling like the Shi phase, but the
distribution and frequency of the tiles is different from the
Shi tiling.

This section can therefore be summarized as follows.
In the phases where atom jumps occur at all (the Rho,
Ran and Aper phases), we observe that changes in the
structure occur at two levels: the tiling changes and the
atoms move. The changes of the tiling can again be sep-
arated into several processes. If the stacking is imperfect,
we have tiling reconstruction, and if there are rhombi we
find tiling relaxation and tile flips. The tiling relaxation
again consists of two parts, an immediate recombination of
rhombi pairs and a slow transformation of single rhombi
together with two squares and a triangle into a shield.
The relaxation steps are reversible if the number of lay-
ers is small, in which case the single rhombi do not die
out. The changes in the tiling are virtual moves, what
really changes are the atom positions. We may again dis-
tinguish several processes. Atoms can jump from one place
to another, travel a long distance, or hop forth and back
between two states. Whereas the first two processes occur
similarly in crystals, the last process is the materialization
of the tile flips, which are highly correlated [31].

4.3 Flat samples without vacancies

In the flat samples we have only three layers instead of ten
as in the cubic samples. This changes the behaviour com-
pletely. In contrast to the corresponding cubic Shi and

SqTr samples, it is possible to observe flips in the flat
ShiFlat and SqTrFlat samples. For the ShiFlat sample
this happens already at T ∗ = 0.6. The initial number of
shields increases until it is similar to the number found in
the AperFlat structure. For the SqTrFlat sample we find
that no tile transformations occur up to T ∗ = 0.8, but
if the temperature is increased to T ∗ = 0.9, some shields
are formed. This temperature is, however, extremely high
compared to the melting temperature (T ∗m = 0.95), and it
may happen that the sample is locally destroyed during
simulation (depending on initial equilibration). This nev-
ertheless corroborates our conclusion that the equilibrium
state of our model is always of the square-triangle-shield
type.

In the AperFlat sample flips are very frequent. Tiles
flip forth and back, and all the basic flips described in
Section 2.1 occur. We can even observe that the relaxation
processes are reversed here and there. Frequent flips are
in fact a general property of the flat samples. This is in
contrast to the cubic samples with many layers, where flips
are very infrequent and seem to die out completely after
several hundred thousand time steps. No more than ten
flips have been observed during 300,000 time steps in all
the cubic samples together.

Pictures of the changes between the initial and final
configurations of an AperFlat sample are presented in Fig-
ure 16. Only the tiles without the atoms have been drawn
for clarity. A comparison of the structure before and af-
ter the simulation clearly shows the jumps of the tiles.
The motion of the atoms during the simulations are re-
vealed by Figure 17, where we have again connected the
initial position of each atom with its final position. In the
projection onto the quasiperiodic plane (left picture) one
observes that the atoms move only very short distances,
in most cases smaller than the nearest neighbour distance.
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Fig. 17. Comparison of the initial and final configuration after 100,000 simulation steps, for the AperFlat sample. On the
left, the projection on the quasiperiodic xy-plane is shown, with initial and final positions connected. On the right, projections
on the xz- and yz-planes are shown, again with initial and final positions connected. One can clearly see that in the periodic
direction atoms move much farther.

The projection onto a plane containing the periodic axis
(right picture) shows that many atoms move long dis-
tances, similar to what we will find in the structures with
vacancies.

To monitor the dynamics of the tile flips we have
quenched the AperFlat sample every 1000 time steps.
From the quenched configurations the tiling can then be
recovered. The tiling does indeed change3, as can be seen
in Figure 18, where the trajectories of the tile centers are
drawn. The moves of the atoms, however, can not be sim-
ply read off from the changes of the tiling. We therefore
call these moves virtual. Most of the flips are rhombi-
shield-rhombi (Fig. 4) and shield-rhombi-shield (Fig. 8)
flips, only a few translational rhombi flips (Fig. 7) occur at
the beginning of the simulation. Flip paths with up to four
flips in different directions are found (Fig. 18). These flip
paths show that tile flips propagate only very slowly, which
is in agreement with the high correlation of flip diffusion
found in Monte-Carlo simulations [31]. The atoms prop-
agate even more slowly. In the quasiperiodic plane they
do not get any farther than nearest neighbor distances in
our simulation. This implies that atoms do not move to-
gether with the tiles. They travel much smaller distances.
These results, which are obtained for realistic quasicrys-
tal structures, show that one must be careful with the
assumptions made in the Kalugin and Katz [1] model of
diffusion in quasicrystals.

The behaviour of the AperFlat sample can be further
quantified. The number of A-atoms nA is directly related
to the number of shields nH and to the number of rhombi
nR. We have nR + nA = a and nR = nA − b, with con-

3 MPEG movies of the flipping tiles can be obtained by
anonymous ftp at ftp.itap.physik.uni-stuttgart.de, in directory
/pub/Film/.
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Fig. 18. Paths of the centers of the tiles.

stants a ≈ 300 and b ≈ 3600 depending on the sample size.
The number of A-atoms decreases sharply during about
60,000 simulation steps, due to the relaxation of rhombi
pairs (see Fig. 19). The trend seems to continue during up
to 700,000 steps, but simulations of the SqTrFlat and Shi-
Flat phases suggest that equilibrium should be reached
soon after. The mean square displacement of the atoms
shown in Figure 20 indicates two processes. The restora-
tion of the tiling by jumps of the atoms in the quasiperi-
odic plane is achieved after about 200,000 time steps.
On the other hand, the jumps along the periodic direc-
tion persist during the whole simulation. This observation
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Fig. 19. Number of atoms in the A-Layer (AperFlat sample).
The steep dashed lines indicate the initial relaxation process,
the other dashed lines indicate that equilibrium has not yet
been reached.
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Fig. 20. Mean square displacements (msd) of the atoms along
different coordinate directions (AperFlat sample).
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Fig. 21. Histogram of the displacements of the atoms along
the x-direction after 700,000 steps (AperFlat sample).

is underlined by histograms of the distances by which the
atoms travel during the simulation. Figure 21 shows that
only a few atoms jump to a nearest neighbour site in the
quasiperiodic plane, whereas Figure 22 indicates that the
atoms jump consecutively from layer to layer along the
periodic direction. Not all atoms take place in the jumps,
but only atoms which happen to be at octahedral sites
inside the shields.

In the flat samples, flips occur sufficiently often so
that their frequency can be measured reliably. A jump
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Fig. 22. Histogram of the displacements of the atoms along
the z-direction after 700,000 steps (AperFlat sample).

of an atom chain along the periodic direction occurs ev-
ery 110,750 time steps. The cosine of the angle between
the directions of two successive jumps of the same atom is
−0.169 on average, which means that successive jumps are
nearly uncorrelated. A jump of a tile occurs about every
12,283 time steps, a jump of a rhombus every 21,123 and
a jump of a shield every 29,288 steps. For rhombus-shield-
rhombus flip the branching ratio between the backward
and the two forward jumps is roughly 4:1:1, and for a
shield-rhombus-shield jumps it is 13:4.

Extrapolating the results for the Rho, Ran and Aper
phases for two different thicknesses to infinitely many lay-
ers, we are led to expect that no flips at all will be observed
in an infinite sample. To further study the influence of the
number of layers on the flip probability, we have used the
Dod sample with a small cell size in the quasiperiodic
plane, but with a varying number of periods. Figure 23
displays the resulting phase diagram, in which the transi-
tion temperature is shown as a function of the number of
layers. Above this temperature, flips do occur during the
first million time steps, but below they don’t. Simulations
with up to 3 × 108 time steps have been carried out for
all possible tiling configurations in a dodecagon to make
sure that a stationary state has been reached. This pro-
cedure is not possible for larger samples due to the large
number of possible configurations and the increase of sim-
ulation time with sample size. The transition temperature
increases nearly linearly with the number of layers, which
indicates that for infinite thickness no flips occur below
the melting temperature. In fact, already above about 12
to 13 ABAB̄ layers no flips are expected to occur any
more.

4.4 Structures with vacancies

The simulations of the samples without vacancies prove
that in the absence of vacancies and half-vacancies diffu-
sion is possible only in samples with very few layers. In
the thermodynamic limit, i.e., with an increasing num-
ber of layers, the jumps and flips completely die out,
due to a strong coupling along the periodic direction.
In thermodynamic equilibrium, however, there is always
an distribution of vacancies and half-vacancies present.
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Fig. 23. Flip phase diagram for the Dod* models. The abscissa
gives the number of periods, the ordinate the temperature. The
two lines connect, respectively, the lowest temperatures where
flips have occurred, and the highest temperatures where flips
have not occurred during a simulation time of 1,000,000 steps.

Unfortunately, starting with a sample without vacancies
this equilibrium distribution is difficult to reach. The same
strong coupling in the periodic direction which hinders
diffusion also hinders the formation of vacancies and half-
vacancies. For this reason, we decided to introduce vacan-
cies artificially, in a controlled way, either on specifically
chosen classes of sites, or on randomly chosen sites, in
oder to see how the equilibrium structure and the diffu-
sion change in the presence of vacancies. Only the SqTr
and Shi samples are used as starting configurations, be-
cause in these phases the atoms are the most immobile.
A summary of the vacancy statistics is given in Table 3.
These numbers show that vacancies are stable in the SqTr
phase, but their number decreases in the Shi phase, which
indicates that some vacancies are transformed into half-
vacancies.

First we discuss vacancies in the SqTr phase. The dif-
ferent vacancy types (vert, edge, sq, tri) behave quite sim-
ilarly. During 150,000 time steps we observe 23 to 35 near-
est neighbour jumps along the periodic direction. In the
SqTr vert phase we also have a few consecutive jumps
of the same atom. In the quasiperiodic plane there are
only single jumps to nearest neighbor sites. The SqTr any
phase with different types of vacancies behaves a little
differently. Only a total of 3 jumps along the periodic di-
rection occur. The jumps are too infrequent for long-range
diffusion to be observed reliably, although the mean square
displacement of the atoms increases continuously during
simulation. The fact that there are only nearest neighbour
jumps indicates that it is normal vacancy diffusion what
we observe.

We have also studied vacancies created inside the
shields of the Shi phase. There are two types of such va-
cancies, ones that are analogous to the vacancies inside
squares (Shi sq phase), and ones that are at octahedral
sites near the centre of the shield (Shi oct phase). The
behaviour of the Shi sq phase is similar to that of the
SqTr phase with vacancies. During 150,000 time steps,
there are about 35 jumps to nearest neighbour sites, with
an isotropic distribution. In the Shi oct phase with 2.5%

Table 3. Number and type of vacancies for some of the sam-
ples: initial number of vacancies (I), number of vacancies after
equilibration (E), final number of vacancies at the end of the
simulation at T = 0.6 (F), and number of vacancies after ad-
ditional quenching (Q).

phase tot I E EQ F FQ

Aper 8360 0 8 – 1 1

Ran 8360 0 0 0 0 2

NPT1 16384 404 365 370 442 427

NPT2 16770 91 31 33 99 83

NPT3 16888 74 19 21 82 76

NVT 16384 361 367 379 317 368

SqTr any 8360 213 208 209 207 210

SqTr edge 2840 210 210 210 210 210

SqTr vert 2240 210 202 202 207 200

SqTr squa 2080 235 210 210 211 210

SqTr tri 1200 210 210 210 210 210

Shi any 960 246 210 210 205 203

Shi oct 960 209 195 182 193 183

Shi oct (1.3%) 960 105 100 94 86 85
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Fig. 24. Histograms of distances between initial and final atom
positions after 100,000 simulation steps, for the Shi oct phase
containing about 2.5% vacancies. Distances both in the (peri-
odic) z-direction and within the (quasiperiodic) xy-plane are
shown. In the periodic direction, atoms get much farther, and
there are clear, discrete step sizes. In the quasiperiodic direc-
tion, step sizes are much smaller, but there are still discrete
step sizes apparent.

or 1.3% vacancies we find a different behaviour. Jumps to
nearest neighbour sites are very frequent. The distances
the atoms travel are 0.5 to 1 in the quasiperiodic plane,
but up to 3 in the periodic direction (see Fig. 24), with all
other integer multiples in between of the nearest neigh-
bour distance (about 0.5) occurring too. This means that
we see long range diffusion predominantly in the periodic
direction, with atoms jumping from layer to layer. The
jump distances indicate vacancy diffusion, although it is
unusual that vacancy diffusion is so anisotropic.

The simulation results for the Shi oct phase are dis-
played in Figure 25. If we compare the right picture with
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Fig. 25. Comparison of the initial and final configuration after 100,000 simulation steps, for the Shi oct phase containing
about 2.5% vacancies inside shields. On the left, a projection of the initial state on the xy-plane is shown. On the right, the
same structure is shown at the end of the simulation. The tiling has been reshuffled, and at different z-coordinates one has
different tilings, so periodicity is slightly broken. Atoms which have moved are primarily inside shields. The tile edges appear as
heavy lines because the tilings at different z-levels, all drawn on top of each other, have been reconstructed from the thermally
distorted atom positions.
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Fig. 26. Comparison of the initial and final configuration after 100,000 simulation steps, for the Shi oct phase containing about
2.5% vacancies. On the left, a projection on the xy-plane is shown, with initial and final positions connected. On the right, a
projection of the same structure onto the xz-plane is shown. It can be seen that atoms primarily move vertically, with small
horizontal displacements only. Jumps of individual atoms are represented by straight line segments. Zig-zags of several line
segments represent chains of atoms which follow each other. If a straight line extends over several layers (right picture), the
corresponding atom must have performed several consecutive jumps.

the right picture of Figure 14, we find that we now have a
large number of triplets of atoms. At these places the pe-
riodicity is broken, and half-vacancies are present. In Fig-
ure 26 (left picture) the shorter connecting lines represent
the formation of triplets. In the right picture of Figure 26,
it can been seen how far the atoms have moved along
the periodic direction. In this case diffusion is strongly
anisotropic.

Vacancies are most effective when they are created
at octahedral sites inside the shields. The vacancies then
catalyze the formation and elimination of rhombi inside
shields. As expected, mobility is primarily in the periodic
direction, whereas in the quasiperiodic plane atoms move
only much shorter distances. We stress that in an infinite
sample vacancies are necessary to allow columns of atoms
to change their places at all. Vacancies therefore mediate
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the flips and the flip diffusion in the quasiperiodic plane,
besides leading to ordinary vacancy diffusion.

The atomic jumps in the presence of vacancies are dif-
ferent from those observed in simulations without vacan-
cies. If there are no vacancies, the jump vector is often
smaller than the atomic distance. The component along
the periodic axis is half the interatomic distance, and the
component in the quasiperiodic plane is even smaller. The
correlation between two successive jumps is very high, the
atoms often jump forth and back. This is in agreement
with the high correlation of flips found in Monte-Carlo
simulations [31]. Due to this high correlation, long range
diffusion in the quasiperiodic plane is too slow to be ob-
served in our simulations. If there are vacancies present,
the jump vector is most frequently the average atomic dis-
tance, thereby indicating that we have predominantly or-
dinary vacancy diffusion. Since the tiling is reshuffled dur-
ing the simulation, flip diffusion must be present too, but
it is masked by the larger vacancy diffusion. The atoms
often move long distances along the periodic direction,
and sometimes also in the quasiperiodic plane. Successive
jumps are much less correlated in the presence of vacan-
cies.

4.5 Flip paths and activation energies

The trajectories of the atoms during an atomic jump or
flip in a quasicrystal can be monitored using the molec-
ular statics method as described, for example, by Beeler
[32]. The method has to be adapted for our case, where
not only single atoms jump, but a whole row of atoms
changes its position. We first explain the procedure for
the simplest case, the relaxation from two rhombi and a
triangle to a triangle and a square. The flip is shown in
Figure 2. We shall call the arrangement of the atoms in
the rhombi-triangle version vertical (v), and the arrange-
ment in the triangle-square configuration staggered (s). In
the relaxation of two rhombi we have 2 atoms per period
that move, which permits 6 degrees of freedom for the tra-
jectory in three dimensions. Due to the mirror symmetry
of the configuration, the degrees of freedom reduce to 4.
It turns out that the distance of the atoms along the pe-
riodic direction remains constant and the center of mass
of the jumping atoms projected onto the quasiperiodic
plane remains unchanged. This removes 2 further degrees
of freedom. The trajectory can well be approximated with
a simple trigonometric function, and the only parameter
which is left is the z-coordinate (or, equivalently, the or-
thogonal coordinate in the symmetry plane) of the flipping
atoms.

The molecular statics calculation now works as fol-
lows. We start with the rhombi-triangle configuration sur-
rounded by a typical shell of atoms. The flipping atoms
are moved in small steps to new z positions, and after each
step the configuration is relaxed by a potential energy op-
timization. In the relaxation the motion of the flipping
atoms is restricted to the plane perpendicular to the pe-
riodic axis, for otherwise the atoms would move to the
next minimum position. In this way it is possible to map

the whole potential energy surface to find the extrema.
From the potential energy surface one can determine both
the flip path and the activation energy. For the rhombi-
triangle-square flip (Fig. 2) we find that the original con-
figuration is a maximum with an activation energy of 5.4
per period above the minimum.

The other flipping configurations, described in Sec-
tion 2, permit up to three pairs of atoms per period to
move. We have restricted the parameter space for each pair
of atoms to the trajectories found in the rhombi-triangle
case, but each pair may move independently of the other
pairs. Inside a shield we have three pairs of atoms that
can be moved (Fig. 5), whereas in the two-fold symmet-
ric hexagon (Fig. 6) and in the translational shield flip
(Fig. 8) there are two pairs.

The second configuration we shall examine is the
twofold symmetric hexagon shown in Figure 6. The en-
ergy minimum is obtained for the sv-configuration in the
middle of Figure 6. The ss-configuration at 1.4 per period
is close to a saddle point with a small activation energy
of 0.9 per period. At the saddle point the flipping atoms
are shifted by 1/10 of the period along the z-axis. The
saddle point also represents the energy barrier. The vv-
configuration is a maximum at 5.3 per period. A typical
flip of this configuration is given in Figure 7.

The most important configuration is the shield
(Fig. 5). The energies per period are the following: the
sss- and ssv-configurations are close together, the first
being 0.35 per period above the minimum, and the sec-
ond 0.60 per period. The real minimum is close to the
ssv-configuration and is obtained by shifting the flipping
atoms by 1/10 of the period along the periodic axis. The
barrier between the sss configuration and the minimum is
at 0.55 per period. The svv-configuration is a local max-
imum at 6.4 per period, and the vvv-configuration is a
strong maximum at 17.5 per period. A typical flip is dis-
played in Figure 4. This flip is called the rhombus-shield-
rhombus flip.

Finally, there exists a translational flip of the shield
(see Fig. 8). It will be called the shield-rhombus-shield
flip. The energy minimum is the vv-configuration, the sv-
configuration is a local minimum at an energy of 0.3 per
period, and the ss configuration exhibits a maximum at
5.5 per period. Between the vv and sv-configurations there
is a barrier of height 0.5 per period above the minimum.

It seems strange, that for a single hexagon the mini-
mum is the sss-configuration, but in the long shield the
minimum is an vv-configuration. There may be two rea-
sons for this. The first is that we have only considered
limited clusters with one additional shell of atoms around
the flipping tile configuration. Secondly, the potential en-
ergy surface in a dynamical simulation may be different
from the statically determined one considered here. The
long shield case, where more atoms are mobile, is closer
to the dynamic treatment. One should also keep in mind
that the (questionable) energy differences between the ss-
and sv-configurations of the long shield, and between the
sss- and ssv-configurations of the shield, are indeed very
small compared with unfavourable configurations.
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In summary, we find that pairs of rhombi are very
unstable, single rhombi may easily change their position
inside a shield by a rotational flip, or inside a twofold
hexagon by a translational flip. Rhombi, together with
squares and triangles, can also be transformed easily into
a shield. Finally, a shield may change its position, if it has
a neighbourhood as in Figure 8 (“long shield”). Such long
shield configurations actually form a percolating cluster in
a typical structure, so that long range tile diffusion should
be possible.

4.6 Energies for vacancies and half-vacancies

We have calculated the energy cost for introducing va-
cancies and half-vacancies into the quasicrystal. For these
calculations we have used a periodic approximant of edge
length 3 +

√
3 containing 180 atoms in a single period.

This approximant has been chosen because it is the small-
est one admitting two separated shields (due to geometric
restriction there has to be an even number of shields and
rhombi together).

The calculations were carried out with the molecular
dynamics program with temperature and pressure set to
0.001 (for numerical stability reasons). A comparison with
a constant volume simulation showed no significant dif-
ference in the average size of the simulation cell and the
potential energies for the same number of periods. To com-
pare samples with different numbers of periods per unit
cell, however, the density of the simulation box had to be
kept constant.

We first calculated the energies of a number of two-
period perfect approximants (360 atoms) with shields and
with one or both shields replaced by rhombi plus squares
and triangles. Then we computed the energy of vacancies
in an s column (in a shield) and in a v column (the shield
replaced). There are two ways each to place the shields
so that they have a) no common vertices (called sepa-
rated), b) one common vertex (joined) or c) a common
edge (fused). In total 16 samples without vacancies and
96 with a single vacancy can be constructed, but not all
of these samples are different.

It would be too long to list all the results, so we will
only sum up the trends here. The potential energy per
atom of the tilings with two shields at different places al-
ready varies considerably (between −4.3744 and −4.3543),
but the spectrum increases further if one or two of the
shields are replaced (between −4.3935 and −4.3503). On
average, the energies per atom with one or two rhombi
are lower than for the tiling they have been constructed
from, but there are also examples where the energy with
shields is as low as with rhombi. For the sake of complete-
ness we also mention the energy of a pure square-triangle
configuration: −4.39008.

It turns out that the energy of a vacancy is largely in-
dependent of the sample. It varies between 6 and 7.2. For
this reason, we could confine a detailed study of the va-
cancy energies to one representative sample. A vacancy in
a vertical chain (6.72) is slightly more favourable than in a
staggered chain (6.82). The average coordination number
is 13.667, and since only nearest neighbour interactions
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Fig. 27. Energy of half-vacancies for a sample with 12 periods,
as a function of vertical atoms. The energy as a function of
staggered atoms is obtained if the x-axis is inverted.

are present, the binding energy of one atom has about
the same value. This means that the energy cost of one
vacancy is quite small.

After it was clear that the vacancy energy is largely
independent of the particular tiling, we chose one sample
with a fixed rhombus and a shield, into which the stag-
gered/vertical chain with half-vacancies could be built in.
For this tiling we calculated the potential energies per
atom for the shield and the rhombus configuration, for
two up to ten periods (Epot = −4.37942 and −4.38238, re-
spectively). It turns out that the energies are completely
independent of the number of periods (if the volume is
fixed).

Next we computed the vacancy energies for two up to
ten layers. With increasing number of layers, the vacancy
energies decrease from 6.12 to 5.92 for the v configuration,
and from 6.49 to 6.32 for the s configuration. The vacancy
energy is proportional to the reciprocal number of layers.
The limit is obtained at about 5 to 6 layers.

For vacancies only their mutual distance is relevant.
On the other hand, half-vacancies always occur in pairs,
due to the periodic boundary conditions, so their energy
depends on the number of periods (size of the sample), but
also on the distance between the two parts of a pair. Due
to the periodic boundary conditions a chain with half-
vacancies always contains a segment with staggered (s)
atoms and a segment with vertical (v) atoms. To calcu-
late the half-vacancy energies, we have to subtract the
weighted total potential energy of the perfect samples with
the vertical and staggered configuration from the total po-
tential energy of the sample with the half-vacancies. The
weight was chosen according to the number of atoms in
the staggered and vertical configuration. The smallest pos-
sible distance between the two half-vacancies is 3/4 of a
period. In this case, only one atom separates the two parts
of the vacancy. This configuration is only (meta-)stable if
the separating atom is at a vertical position. Otherwise
the half-vacancy parts collapse into a vacancy.
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The result for a half-vacancy pair with np = 12 peri-
ods is shown in Figure 27. The figure displays the energy
as a function of the number of vertical atoms nv. The en-
ergy as a function of the staggered atoms is obtained by
replacing nv by ns = 2∗np−1−nv = 23−nv. The energy
decreases with increasing distance between the parts of
the defect pair. The last point is the defect with only one
s atom, which is unstable as noted above. The plateau in
the middle of the plot shrinks if the number of periods is
reduced.

The results can be summarized as follows. Fused
shields cost more energy than joined shields, and these in
turn cost more energy than separated shields. Shields cost
more energy than rhombi. Vacancies in rhombi (vertical
chain) cost less energy than in shields (staggered configu-
ration). The vacancy energy decreases with the number of
periods. Half-vacancy pairs again cost more energy than
vacancies. The energy of a half-vacancy pair decreases if
the two parts move apart and the atoms in between are
in the vertical configuration. If the atoms between are in
the staggered configuration, close half-vacancies are insta-
ble, and the energy remains approximately constant if the
distance between the two parts is increased. For all the
defects encountered, the energy is between 2/3 and 1/2
of the energy that the breaking of the bonds to nearest
neighbours would cost.

All the calculations have been carried out for the low
temperature quasistatic case. At finite temperature, the
small differences between the different tilings and con-
figurations will be washed out by the vibrations of the
atoms. The kinetic energy will also help the atoms to
split a vacancy into two half-vacancies and to change from
the rhombus to the shield configuration. In addition, the
shields and rhombi are usually much farther apart from
one another, and this may also change the energetical be-
haviour, as can be seen in Section 4.5, where the chain
flips have been discussed.

5 Discussion and conclusions

In our MD simulations we have investigated the differ-
ent diffusion mechanisms that occur in the dodecagonal
quasicrystal system. Apart from ordinary vacancy diffu-
sion, we have also observed a diffusion mechanism which is
specific to layered, 1-periodic quasicrystals. In this mech-
anism, the atoms jump from A-type layers to B- and B̄-
type layers, and vice versa, thereby transforming vertical
chains of atoms to staggered ones, and vice versa. Such
flips change the tiling in the quasiperiodic plane, but they
propagate only very slowly. The flips of the tiling appear to
be highly correlated, which is actually not too surprising,
in view of the results of reference [31]. In the same way,
the atoms hardly propagate in the quasiperiodic plane,
but only hop forth and back most of the time. This new
diffusion process will be called chain hopping since, even-
tually, entire chains have to hop in order to produce diffu-
sion in the quasiperiodic plane. This process is therefore
rather different from the mechanism proposed by Kalugin

and Katz [1] and used in many Monte-Carlo simulations
of flip diffusion.

The geometry of the structure changes in the chain
hopping process is quite complicated. The jump distances
of atoms in the quasiperiodic plane are much shorter than
the virtual distances by which the tile centers move. This
is quite similar to the decagonal Zeger-model [33], where
the flips of two pairs of atom chains virtually change
the position of huge clusters, thereby pretending a tiling
change on a much larger scale.

Chain hopping and vacancy diffusion are not indepen-
dent. Vacancies and half-vacancies catalyze the flips, es-
pecially in infinite samples where whole infinite columns
have to be moved. This is achieved by breaking the perfect
periodicity during simulation, which is possible at higher
temperatures due to atom vibrations and lattice expan-
sion with temperature. We find that a sizable density of
half-vacancies and vacancies is always present in equilib-
rium, which is necessary to make chain hopping possible
at all. Without their presence, there would be no diffu-
sion. We should emphasize, however, that the flip mech-
anism, although catalyzed by vacancies, is qualitatively
different from vacancy diffusion, in that the passage of a
vacancy without flips associated with it leaves the struc-
ture unchanged, whereas with the flips the structure is left
completely reshuffled after the passage of the vacancy.

The diffusion in our model is anisotropic, and can be
subdivided into two components at least. We recall that
half-vacancies or vacancies are involved in all diffusion pro-
cesses we have observed. Vacancies lead, on the one hand,
to ordinary vacancy diffusion, which is isotropic. On the
other hand, vacancies and half-vacancies can also catalyze
flips, which produce diffusion in all directions too, but this
diffusion component is much smaller in the quasiperiodic
plane than in the periodic direction. The small shifts in
the quasiperiodic plane and the half integer jumps in the
periodic direction are due to the flip diffusion, whereas
the integer jumps in all directions result from ordinary
vacancy diffusion. In the quasiperiodic direction the va-
cancy part is the dominant one, whereas in the periodic
direction both components contribute.

5.1 Quasicrystals with other symmetries

Our model quasicrystals are somewhat untypical in that
they are periodic in one direction. This causes problems
because flips have to break periodicity to be feasible, and
thus lead to larger mismatches. Icosahedral Frank-Kasper-
type quasicrystals based on the Henley-Elser model [34]
are quite similar to the dodecagonal quasicrystals, but do
allow for flips which are purely local. They need, however,
at least two types of atoms to be stable. Simulations have
shown that it is not possible to exchange atoms of dif-
ferent type without destroying the structure. The chain
hopping process is replaced by a monoatomic ring pro-
cesses involving five or ten atoms at special sites in the
neighbourhood of dodecahedra and oblate rhombohedra.
These tiles are the counterpart to the rhombus and shield
in the dodecagonal case.
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The model structures used in this work are mostly
tetrahedrally close-packed, which makes them very rigid.
Stable quasicrystals like AlPdMn and AlCuFe are not so
densely packed. They contain empty octahedral intersti-
tial positions. Some models [35–37] predict that they are
based on pseudo-Mackay-clusters with a highly mobile in-
ner shell. This may change the diffusion behaviour pro-
foundly.

5.2 Related results of Dzugutov

The stability of the Frank-Kasper-type decoration of
the square-triangle-rhombi-shield tiling was discovered by
Dzugutov [17]. Dzugutov’s goal was to produce a mono-
atomic glass from the melt by rapid quenching. He used
the special potential discussed in Section 13 to disfavour
simple crystalline structures, which would usually nucle-
ate. After cooling below the glass transition temperature
he found a glass which, after a very long annealing time, is
transformed into a dodecagonal quasicrystal. The under-
lying tiling structure is mainly a decorated square-triangle
tiling with a few rhombi and shields. This is exactly the
structure which appeared in the SqTrFlat, ShiFlat and
AperFlat simulations to be the most stable (Sect. 4.3). For
the cubic samples the same statement can not be made,
since we could not reach equilibrium due to the less fre-
quent jumping of the longer chains.

In the structure found by Dzugutov, the quasiperiodic
plane is not parallel to a coordinate axis as in our simula-
tions (Sect. 2), but has an arbitrary orientation. This im-
plies that a walk perpendicular to the plane does not close
after one circuit, but has a certain offset. It further leads
to a frustration of the tiling: after one circuit the tiling is
shifted relative to the initial tiling, but since it is aperi-
odic, there are mismatches which can not be eliminated
and lead to ongoing flips in the simulation. In contrast
to our Rho, Ran, Aper samples (Sect. 4.2), the flipping
activity will therefore not stop after a certain time, since
there is no unique minimal configuration.

Dzugutov [24] observed up to 2.5% vacancies, which
he regards as a generic feature of the structure. We think,
however, that this may not be true, since he cools at con-
stant volume [25], which may force the system to create
vacancies to compensate the shrinking average atomic dis-
tance. He also does not distinguish vacancies and half-
vacancies. The latter occur predominantly at places where
the tiling changes from layer to layer.

Dzugutov’s structure also contains a two-dimensional
extended defect with a width of two to three interatomic
distances, cutting through the quasiperiodic layers. Flips
occur primarily along the defect, thereby shifting its po-
sition. This defect represents a stacking fault connected
with a partial screw dislocation with a Burgers vector of
1/4 of the AA-layer distance in the periodic direction. A
further consequence is, that the layers are not perfectly
flat, but twisted. This planar defect is another source of
half-vacancies and vacancies.

The atomic jumps and phason flips observed by
Dzugutov [24] are exactly the ones introduced in Section 2,

which are observed also in our simulations. Dzugutov
claims that the flips require defects like vacancies, since in
a dense packing of atoms it is not so easy to shift atoms lo-
cally. Our simulations basically confirm this: even though
flips are possible without vacancies in systems with only
few layers, the number of flips rapidly decreases to zero
if the number of layers is increased. In samples with few
layers, the thermal expansion of the lattice allows the cre-
ation of half-vacancies, which in turn can break the period-
icity and catalyze the tile flips. With an increasing number
of layers, however, it becomes harder and and harder to
reach an equilibrium density of vacancies in a MD sim-
ulation, so that the tile flips are suppressed if vacancies
are not introduced artificially. In the case of Dzugutov’s
sample, the persistent stacking frustration and lacking pe-
riodicity clearly help to maintain a sufficient number of
defects to catalize the flips.

Dzugutov [24] further finds a very high diffusion rate
and a small anisotropy. The diffusion along the periodic
direction is larger than in the quasiperiodic plane. Parti-
cles in the defective region are much more mobile than in
the bulk. He claims that there are at least two different
diffusion processes: conventional vacancy jumps and the
phason hopping. We think that it is necessary to add a
further component in his case: there is also grain bound-
ary diffusion involved, due to the planar defect. In our
simulations we find that vacancy diffusion on most sites
is indeed fairly isotropic (Sect. 4.4). There is, however,
the strongly anisotropic component of vacancy and half-
vacancy diffusion on octahedral sites. To test the influence
of the vacancies on the diffusion, we have filled them in
Dzugutov’s structure, but the diffusion constant decreases
only by a factor of 1.5 to 2.5, depending on the num-
ber of filled-in atoms. The vacancies even reappear after
long simulation runs, and the volume increases a little, to
adjust the density for the additional atoms. This result
shows, that the effect of the additional imperfections are
not negligible and cannot be quantified. This was one of
our main reasons to choose perfect tilings for our simula-
tions, and to introduce defects in a controlled way.

5.3 Related theoretical results

Our simulations of a realistic, layered, three-dimensional
dodecagonal quasicrystal indicate that flip diffusion and
similar processes may be much more complicated than de-
scribed in the paper of Kalugin and Katz [1]. In contrast
to the simple theory, atoms are not only located at the
vertices of the tiling, but the tiles are decorated in a com-
plicated way, which means that a lot of atoms take part
in one flip. Flips could involve additional tiles not present
in the ground state. The jump distance of the atoms may
be much shorter than the flip of the tiling vertices.

The predictions of Kalugin and Katz [1] have been
tested by a number of groups [2,4,5,3,6,7] in Monte-Carlo
simulations for pure tiling models, without taking into ac-
count any a specific atomic decoration of the tilings. While
such an approach proves that elementary flip processes
do add up to diffusive behaviour, the physical feasibility



444 The European Physical Journal B

of the flip mechanism and the magnitude of flip diffusion
remain much less certain. In particular, activation energies
of elementary flips cannot be estimated without a specific
atomic structure and a definite atomic interaction. It is
also not clear at which temperatures flip diffusion may be
relevant.

Oxborrow and Henley [23] have studied the two-
dimensional undecorated dodecagonal square-triangle
tiling in detail. They show that simple local flips like the
ones permitted in a rhombus tiling are not possible. To
change the tiling, one has to create flippable configurations
in form of a pair of rhombi, and then flip a whole sequence
of tiles, until the rhombi recombine again. This move has
been called a zipper. Our simulations have shown, that the
creation of flippable configurations is a quite natural pro-
cess, since it is easily possible to create rhombi and shields
(Sect. 4.3). It may even be possible to have a ground state
which already includes shields.

5.4 Related experimental results

Joulaud et al. [12,13], Zumkley et al. [14,15] and Sprengel
et al. [16,38] find that self-diffusion and hetero-diffusion in
quasicrystalline AlPdMn and AlCuFe above T ≈ 600 ◦C is
similar to what is known from similar crystalline Al alloy
phases. The diffusion follows an Arrhenius law, and the ac-
tivation energy as well as the pre-factor can be explained
easily by vacancy diffusion. Measurements by Blüher et al.
[39] indicate that there is a significant change in the diffu-
sion parameters at low temperatures for Pd and Au diffu-
sion in AlPdMn. This behaviour is not known for crystals,
but has some similarity with what is known for amorphous
structures. It is speculated that this is the contribution of
the quasicrystal-specific flip diffusion.

Coddens et al. [8–10] and Lyonnard et al. [11] have
observed atomic jumps directly in AlCuFe and AlPdMn,
using inelastic neutron scattering and Mößbauer measure-
ments. With quasi-elastic neutron scattering they observe
Cu jumps in AlCuFe with a distance of 4 Å (size of the ele-
mentary clusters), and possibly also jumps with a distance
of 2.7 Å. Since the temperature independent width of the
signal is Γ = 55 µeV, the process is too fast to be ordinary
diffusion. The intensity follows an Arrhenius law with an
activation energy of Q = 755 meV, which means that it is
an assisted process, possibly by Al vacancies. The obser-
vation is explained by assisted phason hopping. It can not
be explained by cluster vibrations and collective modes.
The Mößbauer results yield a jump vector of 2.5 Å for Fe,
with a width of Γ = 4 µeV. De Aráujo et al. [40] con-
clude from the time dependent second order Doppler shift
and the anomaly of the Debye-Waller factor in Mößbauer
spectroscopy that they do not observe lattice vibrations,
but Fe hopping. The intensity of the scattering signal is
constant with Q, while the width scales with ∆Q2. This
behaviour is opposite to what is expected from the theory
of Kalugin and Katz [1].

The long jump vectors observed by Coddens and Ly-
onnard [41] are distances between second neighbours. The

less frequent shorter jump vectors connect nearest neigh-
bours. This result is quite different form ours: the jump
vector component in the quasiperiodic plane is about 1/4
of the atomic distance, the component along the periodic
axis is 1/2. The distance for vacancy jump processes, how-
ever, is the atomic distance. The coupling we observe be-
tween vacancies and half-vacancies on the one hand, and
flips on the other hand, clearly shows that the jump pro-
cesses we observe are assisted processes.
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